Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Psychiatry Res Case Rep ; 1(2): 100043, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2250943

ABSTRACT

COVID-19 has many complications that are associated with this infection. Neuropsychiatric symptoms are common and can present with symptoms documented both during acute COVID-19 infection and developing after the resolution of respiratory symptoms. Patients have presented with a variety of symptoms such as anosmia, seizures, cognitive and attention deficits, new or progression of existing anxiety, depression, psychosis, and rarely catatonia. Although rare, catatonia and each of its subtypes have now been reported as complications of COVID-19 and therefore, should be considered known to occur in both during the acute and postinfectious states. Diagnosis of catatonia in the context of COVID-19 should be considered when work-up for more common medical causes of encephalopathy are negative. There have been cases documented in the literature of patients presenting to the hospital with catatonia during COVID-19 infection. However, we present a case of akinetic catatonia in setting of COVID-19 infection and premorbid serious mental illness that was diagnosed and treated on an outpatient basis with close collaboration between primary care and psychiatry.

2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.29.441933

ABSTRACT

The Severe Acute syndrome corona Virus 2 (SARS-CoV-2) outbreak in December 2019 has caused a global pandemic. The rapid mutation rate in the virus has caused alarming situations worldwide and is being attributed to the false negativity in RT-PCR tests, which also might lead to the inefficacy of the available drugs. It has also increased the chances of reinfection and immune escape. We have performed Molecular Dynamic simulations of three different Spike-ACE2 complexes, namely Wildtype (WT), B.1.1.7 variant (N501Y Spike mutant) and B.1.617 variant (L452R, E484Q Spike mutant) and compared their dynamics, binding energy and molecular interactions. Our result shows that mutation has caused the increase in the binding energy between the Spike and hACE2. In the case of B.1.617 variant, the mutations at L452R and E484Q increased the stability and intra-chain interactions in the Spike protein, which may change the interaction ability of human antibodies to this Spike variant. Further, we found that the B.1.1.7 variant had increased hydrogen interaction with LYS353 of hACE2 and more binding affinity in comparison to WT. The current study provides the biophysical basis for understanding the molecular mechanism and rationale behind the increase in the transmissivity and infectivity of the mutants compared to wild-type SARS-CoV-2.


Subject(s)
Acute Disease
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.01.425028

ABSTRACT

The SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus) has accumulated multiple mutations during its global circulation. Recently, a new strain of SARS-CoV-2 (VUI 202012/01) had been identified leading to sudden spike in COVID-19 cases in South-East England. The strain has accumulated 23 mutations which have been linked to its immune evasion and higher transmission capabilities. Here, we have highlighted structural-function impact of crucial mutations occurring in spike (S), ORF8 and nucleocapsid (N) protein of SARS-CoV-2. Some of these mutations might confer higher fitness to SARS-CoV-2. SummarySince initial outbreak of COVID-19 in Wuhan city of central China, its causative agent; SARS-CoV-2 virus has claimed more than 1.7 million lives out of 77 million populations and still counting. As a result of global research efforts involving public-private-partnerships, more than 0.2 million complete genome sequences have been made available through Global Initiative on Sharing All Influenza Data (GISAID). Similar to previously characterized coronaviruses (CoVs), the positive-sense single-stranded RNA SARS-CoV-2 genome codes for ORF1ab non-structural proteins (nsp(s)) followed by ten or more structural/nsps [1, 2]. The structural proteins include crucial spike (S), nucleocapsid (N), membrane (M), and envelope (E) proteins. The S protein mediates initial contacts with human hosts while the E and M proteins function in viral assembly and budding. In recent reports on evolution of SARS-CoV-2, three lineage defining non-synonymous mutations; namely D614G in S protein (Clade G), G251V in ORF3a (Clade V) and L84S in ORF 8 (Clade S) were observed [2-4]. The latest pioneering works by Plante et al and Hou et al have shown that compared to ancestral strain, the ubiquitous D614G variant (clade G) of SARS-CoV-2 exhibits efficient replication in upper respiratory tract epithelial cells and transmission, thereby conferring higher fitness [5, 6]. As per latest WHO reports on COVID-19, a new strain referred as SARS-CoV-2 VUI 202012/01 (Variant Under Investigation, year 2020, month 12, variant 01) had been identified as a part of virological and epidemiological analysis, due to sudden rise in COVID-19 detected cases in South-East England [7]. Preliminary reports from UK suggested higher transmissibility (increase by 40-70%) of this strain, escalating Ro (basic reproduction number) of virus to 1.5-1.7 [7, 8]. This apparent fast spreading variant inculcates 23 mutations; 13 non-synonymous, 6 synonymous and 4 amino acid deletions [7]. In the current scenario, where immunization programs have already commenced in nations highly affected by COVID-19, advent of this new strain variant has raised concerns worldwide on its possible role in disease severity and antibody responses. The mutations also could also have significant impact on diagnostic assays owing to S gene target failures.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , Hearing Loss, Sudden , COVID-19 , Seizures
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.17.301614

ABSTRACT

We are in the midst of the third severe coronavirus outbreak caused by SARS-CoV-2 with unprecedented health and socio-economic consequences due to the COVID-19. Globally, the major thrust of scientific efforts has shifted to the design of potent vaccine and anti-viral candidates. Earlier genome analyses have shown global dominance of some mutations purportedly indicative of similar infectivity and transmissibility of SARS-CoV-2 worldwide. Using high-quality large dataset of 25k whole-genome sequences, we show emergence of new cluster of mutations as result of geographic evolution of SARS-CoV-2 in local population ({greater than or equal to}10%) of different nations. Using statistical analysis, we observe that these mutations have either significantly co-occurred in globally dominant strains or have shown mutual exclusivity in other cases. These mutations potentially modulate structural stability of proteins, some of which forms part of SARS-CoV-2-human interactome. The high confidence druggable host proteins are also up-regulated during SARS-CoV-2 infection. Mutations occurring in potential hot-spot regions within likely T-cell and B-cell epitopes or in proteins as part of host-viral interactome, could hamper vaccine or drug efficacy in local population. Overall, our study provides comprehensive view of emerging geo-clonal mutations which would aid researchers to understand and develop effective countermeasures in the current crisis.


Subject(s)
COVID-19
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.08.107011

ABSTRACT

Pathogens are often known to use host factor mimicry to take evolutionary advantage. As the function of the non-structural ORF8 protein of SARS-CoV-2 in the context of host-pathogen relationship is still obscure, we investigated its role in host factor mimicry using computational protein modelling techniques. Modest sequence similarity of ORF8 of SARS-CoV-2 with the substrate binding site within the C-terminus serine-protease catalytic domain of human complement factor 1 (F1; PDB ID: 2XRC), prompted us to verify their resemblance at the structural level. The modelled ORF8 protein was found to superimpose on the F1 fragment. Further, protein-protein interaction simulation confirmed ORF8 binding to C3b, an endogenous substrate of F1, via F1-interacting region on C3b. Docking results suggest ORF8 to occupy the binding groove adjacent to the conserved arginine-serine (RS) F1-mediated cleavage sites on C3b. Comparative H-bond interaction dynamics indicated ORF8/C3b binding to be of higher affinity than the F1/C3b interaction. Hence, ORF8 is predicted to inhibit C3b proteolysis by competing with F1 for C3b binding using molecular mimicry with a possibility of triggering unregulated complement activation. This could offer a mechanistic premise for the unrestrained complement activation observed in large number of SARS-CoV-2 infected patients.


Subject(s)
Retinoschisis , Severe Acute Respiratory Syndrome
6.
preprints.org; 2020.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202003.0320.v1

ABSTRACT

We are witnessing the severe third outbreak mediated by coronaviruses affecting global public health with unprecedented economic consequences. A better understanding of its phylogenetics, exploration of sequence features and mutational changes could unveil its genealogy to gain insights into the mechanism of transmission and development of possible interventions. Our comparative genomic analyses of >160 isolates of SARS-CoV-2 reveal phylogenetic kinship with other coronaviruses and emergence of evolutionary divergence in clinical isolates. t-SNE-based clustering revealed different clades but no continent specific clusters. Amino acid substitutions at RBD of spike protein provide possible reasons for rapid transmission. Few proteins specific to SARS-CoV-2 were identified which could have implications as therapeutic targets and diagnostic biomarkers. Virtual screening identified repurposed drugs, known nutraceuticals, for specific interventions. These phylogenetic observations reveal the ancestry and computational studies reveal the emergency measures to interject this emerging pathogen that pose threat to whole of mankind.

SELECTION OF CITATIONS
SEARCH DETAIL